Joint Entity Recognition and Linking in Technical Domains Using Undirected Probabilistic Graphical Models
نویسندگان
چکیده
The problems of recognizing mentions of entities in texts and linking them to unique knowledge base identifiers have received considerable attention in recent years. In this paper we present a probabilistic system based on undirected graphical models that jointly addresses both the entity recognition and the linking task. Our framework considers the span of mentions of entities as well as the corresponding knowledge base identifier as random variables and models the joint assignment using a factorized distribution. We show that our approach can be easily applied to different technical domains by merely exchanging the underlying ontology. On the task of recognizing and linking disease names, we show that our approach outperforms the state-of-the-art systems DNorm and TaggerOne, as well as two strong lexicon-based baselines. On the task of recognizing and linking chemical names, our system achieves comparable performance to the state-of-the-art.
منابع مشابه
6 Relational Markov Networks
One of the key challenges for statistical relational learning is the design of a representation language that allows flexible modeling of complex relational interactions. Many of the formalisms presented in this book are based on the directed graphical models (probabilistic relational models, probabilistic entity-relationship models, Bayesian logic programs). In this chapter, we present a proba...
متن کاملCombining Textual and Graph-Based Features for Named Entity Disambiguation Using Undirected Probabilistic Graphical Models
Named Entity Disambiguation (NED) is the task of disambiguating named entities in a natural language text by linking them to their corresponding entities in a knowledge base such as DBpedia, which are already recognized. It is an important step in transforming unstructured text into structured knowledge. Previous work on this task has proven a strong impact of graph-based methods such as PageRa...
متن کاملA Framework Based on Graphical Models with Logic for Chinese Named Entity Recognition
Chinese named entity recognition (NER) has recently been viewed as a classification or sequence labeling problem, and many approaches have been proposed. However, they tend to address this problem without considering linguistic information in Chinese NEs. We propose a new framework based on probabilistic graphical models with firstorder logic for Chinese NER. First, we use Conditional Random Fi...
متن کاملRule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملUPGMpp: a Software Library for Contextual Object Recognition
Object recognition is a cornerstone task towards the scene understanding problem. Recent works in the field boost their performance by incorporating contextual information to the traditional use of the objects’ geometry and/or appearance. These contextual cues are usually modeled through Conditional Random Fields (CRFs), a particular type of undirected Probabilistic Graphical Model (PGM), and a...
متن کامل